13 research outputs found

    Wireless Resource Management in Industrial Internet of Things

    Get PDF
    Wireless communications are highly demanded in Industrial Internet of Things (IIoT) to realize the vision of future flexible, scalable and customized manufacturing. Despite the academia research and on-going standardization efforts, there are still many challenges for IIoT, including the ultra-high reliability and low latency requirements, spectral shortage, and limited energy supply. To tackle the above challenges, we will focus on wireless resource management in IIoT in this thesis by designing novel framework, analyzing performance and optimizing wireless resources. We first propose a bandwidth reservation scheme for Tactile Internet in the local area network of IIoT. Specifically, we minimize the reserved bandwidth taking into account the classification errors while ensuring the latency and reliability requirements. We then extend to the more challenging long distance communications for IIoT, which can support the global skill-set delivery network. We propose to predict the future system state and send to the receiver in advance, and thus the delay experienced by the user is reduced. The bandwidth usage is analysed and minimized to ensure delay and reliability requirements. Finally, we address the issue of energy supply in IIoT, where Radio frequency energy harvesting (RFEH) is used to charge unattended IIoT low-power devices remotely and continuously. To motivate the third-party chargers, a contract theory-based framework is proposed, where the optimal contract is derived to maximize the social welfare

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Doppler rate estimation for OFDM based communication systems in high mobility

    No full text
    This paper considers OFDM (orthogonal frequency division multiplexing) based broadband wireless communications in high mobility with rapid time-varying Doppler shifts, where the received signal is significantly degraded by Doppler distortion, such as in a scenario of low-earth-orbit satellite communications. Since existing Doppler rate estimation methods are mainly designed for single carrier systems, two new CP (Cyclic Prefix) based Doppler rate estimators are proposed for OFDM based systems with discrete pilots, i.e. SOD (second order difference) estimator and ML (maximum likelihood) estimator. Furthermore in a time-dispersive channel a modification is conducted to improve both estimators accuracy in a fading channel. In the simulation part proposed estimators are compared with existing single-carrier Doppler rate estimators to verify the effectiveness and efficiency of the proposed estimators in an OFDM system. Specifically simulation results verify the low complexity of SOD estimator, the high accuracy of ML estimator, the insensitivity to initial Doppler shifts of both estimators and the accuracy improvement of modified estimators in a fading channel

    Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates

    No full text
    While numerous single atoms stabilized by support surfaces have been reported, the synthesis of in-situ reduced discrete metal atoms weakly coordinated and stabilized in liquid media is a more challenging goal. We report the genesis of mononuclear electron deficient Pt-1(0) by reducing H2PtCl6 in liquid polydimethylsiloxane-polyethylene glycol (PDMS-PEG) (Pt-1@PDMS-PEG). UV-Vis, far-IR, and X-ray photoelectron spectroscopies evidence the reduction of H2PtCl6. CO infrared, and Pt-195 and C-13 NMR spectroscopies provide strong evidence of Pt-1(0), existing as a pseudo-octahedral structure of ((ROR2)-O-1)(2)Pt(0)Cl2H2 (R-1 and R-2 are H, C, or Si groups accordingly). The weakly coordinated ((ROR2)-O-1)(2)Pt(0)Cl2H2 structure and electron deficient Pt-1(0) have been validated by comparing experimental and DFT calculated Pt-195 NMR spectra. The H+ in protic state and the Cl- together resemble HCl as the weak coordination. Neutralization by a base causes the formation of Pt nanoparticles. The Pt-1@PDMS-PEG shows ultrahigh activity in olefin hydrosilylation with excellent terminal adducts selectivity
    corecore